PHYSICAL REVIEW E

VOLUME 49, NUMBER 3

MARCH 19%4

Nonlinear coupling in the crossing-angle beam-beam interaction
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The effects of the beam-beam interaction with a small crossing angle on large-amplitude particles in an
e* e collider are studied. An analytical resonance analysis method is developed to understand the non-
linear coupling resonance driving mechanism. The major effect of the crossing angle for large-amplitude
particles is to drive the 5Q, +Q, =integer resonance family. The analytic results are consistent with a
computer simulation. The resonance is observed in the crossing-angle experiment in the Cornell Elec-

tron Storage Ring.

PACS number(s): 52.75.Di, 29.27.Bd, 41.75.Ht, 29.20.Dh

I. INTRODUCTION

To study CP violation in B-meson decays, a luminosity
of at least 3X10® cm™2sec™! is needed, which is
~10-50 times higher than what is currently achieved in
electron-positron colliders. The most direct way to
achieve the needed luminosity is to increase the collision
frequency by shortening the space between bunches. This
raises the problem of separating the bunches at the first
parasitic collision point. One possible solution is to col-
lide the beams with a crossing angle, and, in fact, pro-
posed high-luminosity e *e ™ colliders either have a cross-
ing angle or have a crossing angle as an option.

The introduction of a crossing angle in e *e ™ colliders
causes nonlinear coupling between horizontal motion and
longitudinal motion. This problem has been observed in
operation [1] and discussed elsewhere [1-3]. This paper
will concentrate on understanding the coupling resonance
driving mechanism. In order to analyze the problem, we
make a thin-lens approximation in which a particle gets
only one momentum-changing kick when it passes the
opposite bunch. This is a reasonable approximation be-
ing widely used in most beam-beam simulation programs,
especially in the case of horizontal kick, where the
change of beam size within one bunch length is not
significant. The kick occurs when the particle passes the
center of the opposing bunch. The strength of the kick,
Ar'=F(r), is a nonlinear function of the distance r be-
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FIG. 1. Kick in crossing-angle collision.

1063-651X/94/49(3)/2251(6)/$06.00 49

tween the particle and the center of the opposite bunch.
In head-on collisions, » is the transverse displacement,
and the kick is in the transverse plane, so that the process
is nonlinear but not influenced by the longitudinal
motion. In collisions with a crossing angle, however, 7 is
a function of longitudinal displacement s and the crossing
angle @, as well as transverse displacement. Figure 1
shows the geometry when the kick occurs with a crossing
angle. The distance r between the test particle and the
bunch center can be written as

r=x +stan®d . (1)

The kick is a function of both transverse and longitudinal
positions and, as a result, nonlinear synchro-betatron
coupling is generated by the crossing-angle collision. In
addition, the kick has a component in the longitudinal
direction.

This paper investigates the effects of the nonlinear cou-
pling caused by the crossing-angle collision. Since anoth-
er study suggests that the effects are mostly on the beam
tail, rather than the beam core [3], the investigation is
concentrated on large-amplitude particles. Another
study [4] has investigated the crossing-angle beam-beam
problem from the operational point of view. There are
many measurements made in luminosity performance,
beam-beam tune shift, etc.

The parameters used are based on the Cornell B-
Factory (CESR-B) design, but the conclusion is general
because the beam-beam interaction is essentially the same
for all B-Factory designs. The experiment was performed
on the Cornell Electron Storage Ring (CESR). The quali-
tative theoretical analysis, computer simulation, and ex-
perimental measurement are in agreement.

II. THEORETICAL ANALYSIS

A resonance analysis method is introduced in this sec-
tion. The analysis is good for a linear storage ring with a
single nonlinear thin elements [5], which is a reasonable
approach to the beam-beam interaction problem. This
method is developed to employ the Fourier transform to
expand the nonlinear force, and relates the Fourier ex-
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pansion components to certain resonances.

In an ideal storage ring, particles in each bunch are in
three-dimensional oscillation about the center of the
bunch. In the crossing-angle problem, we are interested
in the horizontal (x) and longitudinal (s) motion. If we
sit at one point of a linear ring observing a particle, its
motion can be described by the difference equations:

X, 41— 2x, cospu, +x,_1=0, ()
S; 41— 28, cosp,+s, =0, (3)

where ¢ stands for turn number and p, and p, are the

whole-turn phase advances of the oscillations. It is
straightforward to find their solutions:
x,= A, cos(u,t) , 4)
s, = A, cos(p,t) . (5)

With the crossing-angle collision, the difference equations
become

X 4120080, X, T X,

= —B, sinu, F(x,+s, tan®) cos’®d , (6)
Si+12c08148, F8,

=pf, sinu F(x,+s, tan®) sin® cos® (7)

where F is the horizontal beam-beam kick, which can be
approximated by a Dawson integral [6]:

_ r
F(r)=F, Via] 8)
and
= __V2 Y 12
Fy)=e™ [Ye’dr )

where o, is the horizontal beam size. S, can be defined
in an analogous way to the transverse motion [7]. In the
difference equations (6) and (7), the kick modulation of
the arrival time is neglected. This is because (1) the 5, at
the interaction point (IP) is much larger than the bunch
length. The B, change in the bunch length range is negli-
gible. (2) If the kick (Ax’) is transferred back to the IP
through drift space, it has the same amount. For small
crossing angle ®, the nonlinear kick in the longitudinal
plane is very weak. In addition, the longitudinal emit-
tance is much larger than the horizontal emittance,
which means s is much larger than x. Therefore the lon-
gitudinal nonlinear kick is negligible. Thus the above
equations are simplified:

X, 12008, x, X,
= —p, sinu, F(x, +s, tan®) cos’® ,  (10)
S, +1—2cosugs, +s,_,=0 . (11)

Equation (11) has the same solution as (5). As the first
step approximation, substitute (4) into the right-hand side
of (10). Particles at large amplitude were used to evaluate
the resonances, because previous studies have shown that

crossing angles would mostly affect the large-amplitude
particles [3]. 60 amplitude is chosen because it is the
typical amplitude for large-amplitude particles which we
concentrate on, and changes near this amplitude do not
change the qualitative conclusion. Taking 4, =60, and
A, =60, the Dawson integral becomes

6 O,cosu.t+o,tan® cosu,t
V2 o

F, (12)

X

From (12), we notice that the coupling term is actually
proportional to (A4 /o, )tan®, rather than tan®. Since
A, ~o,, the coupling generally scales as (o, /0, )tan®.
This is called the normalized crossing angle.

Expanding the nonlinear kick in a two-dimensional
Fourier series, the right-hand side of (10) can be written
as

37 2 Cmncos[(mu, +nu)t]+d,, , cos[(mu, —npt] .
m,n

(13)

Similarly, a solution is expected in the form
X, =% 3 @y, cos[(mps, +nps, )]
m,n

+b,, , cos[(mu, —np)t] . (14)

Substituting the above equations into (10), it is easy to
find the resonance driving relations:

c

m,n

mn = 2 sind[(m + Dp, +nps, Isind[(m — Dpr, +np]

(15)
_ d
™ 2sind[(m 4+ Dp, —npg)sind[(m —Dp, —npg] -

(16)

m,n

b

Near resonances (m +1)Q, +=nQ, =integer, the denomina-
tor is small. Then, (q,b), , has strong response to
(¢,d), ,- Therefore we can say that c,, , and d,, , drive
these resonances.

Figure 2 shows the power spectrum of the Dawson in-
tegral (12), created by two-dimensional Fast Fourier
transform (FFT). The power spectrum V/c2 ,+d2,
gives the resonance driving strength. The phase of the
driving terms is not important. Due to the symmetry of
the function, the terms with m +»n =even vanish. In the
calculation, the crossing half angle ® is 10 mrad. The
beam sizes o, and o, are taken as 0.36 mm and 1 cm, re-
spectively, corresponding to the CESR-B design. The
normalized crossing angle, defined as (o /o, )®, is 0.278.

From Fig. 2, we can easily see that, besides the one-
dimensional resonance driving terms (n =0), the strong-
est coupling resonance (n70) driving terms are those
with m =4, n =1 and m =6, n =1. According to the
previous analysis, these two terms will drive
30,0, =integer, 5Q,+Q =integer and 5Q,tQ
=integer, 70, +Q, =integer resonances, respectively. It
is natural to conclude that the 5Q,+Q,=integer reso-
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FIG. 2. The power spectrum of the crossing-angle beam-
beam kick.

nances are the strongest coupling resonances, since they
are driven by both of the two largest driving terms.

We can iterate the previous process to obtain the solu-
tion of motion. However, this method cannot apply on
the resonances because the denominators become zero.
The iteration will diverge near the resonances. Therefore
the theoretical analysis provides a rough idea of reso-
nance driving strength and simulation was performed to
calculate the particle motion.

III. SIMULATION

The simulation described here is aimed to explore the
phenomenal difference with and without crossing angle.
The results are only expected to make qualitative com-
parison with the theory and experiment, but not quantita-
tive. In the simulation, some physics such as radiation
damping and excitation does not change the qualitative
results and, therefore, is neglected to enhance the in-
terested physical phenomena.

A simple simulation program similar to Piwinski’s
work [3] was written to study the crossing-angle collision
problem. The simulation program adopts a weak-strong
beam-beam interaction model, and consists of only a sin-
gle beam-beam kick and a linear map for the ring. The
beam-beam kick is calculated based on a Padé approach
of complex error function [8], and incorporates the
crossing-angle collision. Three-dimensional motion is
simulated. Particles are launched in six-dimensional
phase space with 60 amplitudes, which are chosen for the
same reason as in the theoretical analysis. For conveni-
ence of studying resonances, the program scans the hor-
izontal fractional tune from O to 1. The maximum ampli-
tude of all particles ever reached during the 1000-turn
tracking is recorded as a function of horizontal tune.

A. Head-on collision

The goal of the simulation is to study the nonlinear
synchro-betatron coupling due to a beam-beam interac-
tion with a crossing angle. However, even with zero
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FIG. 3. Maximum horizontal amplitude vs tune for head-on
collision. Labels above peaks identify resonances.

crossing angle, the beam-beam interaction excites many
resonances. Therefore, as a baseline, the simulation was
done with head-on beams and an uncoupled ring. This
result will be used for comparing with crossing-angle col-
lisions to find out which new resonances are excited.

Figure 3 shows the maximum horizontal amplitude of
all particles ever reached during the tracking as a func-
tion of horizontal tune with the vertical tune being fixed
at 12.71. It is easy to identify the spikes in the horizontal
amplitude plot. The spikes correspond to the half in-
teger, fourth integer, sixth integer, eighth integer, tenth
integer,. .. resonances, as marked in the picture. Be-
cause the beam-beam kick is antisymmetric about the
beam axis, only even order resonances are excited.

B. Crossing-angle collision

The results of a simulation with ®=10 mrad crossing
angle are shown in Fig. 4. Comparing Figs. 3 and 4, it is
easy to see many more resonances than in the case of a
head-on collision. Some one-dimensional resonances,
such as Q, =1, 4, and ¢, already exist in head-on col-
lision. Besides those resonances, the strongest new reso-
nances are identified as 5Q,+Q,=integer resonances.
The coupling resonance Q, +Q, =integer can also be seen
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FIG. 4. Maximum horizontal amplitude vs tune for
crossing-angle collision (Q, =0.081).
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in this picture. The conclusion supports the theoretical
analysis result.

1V, EXPERIMENT

The experiment is designed to observe the 50, +Q
resonance associated with crossing-angle collision, which
is predicted by the theory in previous sections. Accord-
ing to the theory, the 5Q,+Q, resonances drive large-
amplitude particles to even larger amplitudes, which can
result in losing those particles. Therefore one should ex-
pect to see a bad lifetime near those resonances.

The experiment is based on the setup of the CESR
crossing-angle experiment [4]. CESR has been running
with multibunch mode (seven bunches of e~ on seven
bunches of et). The key point of making multibunch
mode possible is to separate bunches around the ring ex-
cept at the interaction point where the detector is locat-
ed. In CESR, four electrostatic separators are used to
separate electron and positron orbits at parasitic crossing
points. As shown in Fig. 5, the orbits (thin lines) are
separated at 13 would-be collision points, but are merged
between the two south (lower) separators, including the
interaction point where the collision takes place. The
crossing-angle lattice is essentially a modified version of
the normal-operation lattice. The experiment was per-
formed with one bunch on one bunch. A certain amount
of antisymmetric voltage is applied to the south separa-
tors, which creates antisymmetric orbits about the IP.
This is displayed in Fig. 5 as the thick lines. It is easy to
see from the picture that the beams will collide at the IP
with an angle. The half crossing angle can go up to about
12.5 mrad. The crossing angle is limited by the physical
aperture at the interaction region (IR) quadrupoles,
where the closed orbit is moved to 8.60 from vacuum
chamber.

The procedure of the experiment is similar to the simu-

— Electron orbit
— — ldeal orbit
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- Electron crossing
= == Positron crossing
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FIG. 5. Diagram of the orbits for the crossing-angle experi-
ment.
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lation: scan the horizontal tune while the beams collide
at an angle, and measure the decay rate (time derivative
of the beam current). The weak-strong scenario is repro-
duced via collisions of a 2-mA beam of electrons and a
10-mA beam of positrons. The tune scan is carried out
near the 5Q, +Q, =43 (for Q,=0.064, Q, =8.587) reso-
nance. The reason to choose this resonance is that the
crossing-angle lattice working point is close to the reso-
nance (nominal horizontal tune Q, =8.57). It is easy to
move the tune to the vicinity of the resonance. In addi-
tion, simulation shows that this resonance is in a “clean”
area, i.e., there are no other strong resonances near by.

A. Measurement of 5Q, + Q; resonance
with and without crossing angle

The experiment described in this section is designed to
give a qualitative answer to whether the nonlinear
synchro-betatron resonance predicted by the theory ex-
ists in practice.

A tune-scan program was used in the measurement.
This program automatically changes the tune by chang-
ing the strengths of quadrupoles in the arc uniformly.
The interaction region quadrupoles are not changed, so
that the perturbation to the IR optics is minimized. The
tune scan varies tune by only 0.2%. Its effects on optics
is unmeasurable. The vertical beam sizes and currents of
both beams are measured and recorded after each step of
tune change. The vertical beam size is measured by the
synchrotron light monitor, but this monitor does not
have sensitivity at the large amplitudes studied in this pa-
per. Tunes and tune changing rates were calibrated be-
fore each run with the coherent tune shift taken into ac-
count. At the beginning of the experiment, the machine
was tuned up with two strong beams so that a reasonable
luminosity and beam-beam tune shift were achieved.
Then, to make a strong-weak collision, the electron beam
was removed and a weak electron beam is injected.

The longitudinal frequency has been measured to be
24.5 kHz. Because the CESR revolution frequency f, is
390 kHz, the synchrotron tune is Q, = f, /f, =0.0628.

Before measuring the resonance, the optics is checked
by single beam tune scan. One of the important issues is
to set chromaticity near zero. This was typically done to
+0.3. Otherwise, the finite chromaticity introduces tune
modulation, which could excite the same resonance
(5Q, +Q,) with the involvement of sextupole field on sin-
gle beam.

For comparison, Fig. 6 gives both the simulation re-
sults and experimental results. Figure 6(a) shows the
simulation results for head-on collisions (solid line) and
crossing-angle collisions (dashed line). The plot gives the
maximum horizontal amplitude as a function of horizon-
tal tune. It shows that the 50, +Q, resonance appears
only when the beams collide at an angle. Figure 6(b)
plots the measured results. The data are from two
separate measurements: one with the crossing angle
turned on (dashed line), and the other one with the angle
turned off (solid line). Both measurements employ
strong-weak collisions, i.e., 10-mA positron on 2-mA
electron. The weak beam (electron) is driven by the reso-
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FIG. 6. (a) Simulation result, maximum amplitude vs hor-
izontal tune. (b) Experimental data, decay rate as a function of
horizontal tune. Solid lines are the head-on collision data, and
dashed lines are the crossing-angle data.

nance, suffering bad lifetime (or large decay rate). The
decay rate is obtained by numerically differentiating the
electron current versus time (as the result of
differentiation, some jitter in the current measurement
creates bipolar spikes, which result in unrealistic negative
decay rates). The predicted resonance at Q, =0.587 ap-
pears in the data plotted in Fig. 6.

To confirm that what is measured is really the result of
crossing-angle collisions, rather than due to the closed or-
bit effects, a measurement was made with a magnetic or-
bit distortion. This is the same lattice used to create the
crossing angle, except that magnets are used to create an
orbit which is very close to one of the crossing-angle or-
bits. Therefore both beams go through the same magnet-
ic field as in the crossing-angle experiment, but collide
head on. In this measurement, we see no resonance exci-
tation, confirming that the resonance is the result of the
crossing-angle collision.

B. Resonance strength as a function of crossing angle

The experiment described in this section measures the
same resonance by the technique discussed above, as a
function of crossing angle. The crossing angle was set to
different values and a one-dimensional tune scan was per-
formed to measure the decay rate as a function of tune at
each angle. The angle is controlled by the antisymmetric
voltage applied to the south separators. Figure 7 gives
the measured results. Test runs have indicated that the
resonance is not measurable for half crossing angle small-
er than 1.4 mrad. Hence detailed measurements took
place at larger half crossing angles, up to 2.4 mrad. The
picture shows a clear ridge of the decay rate at the
50, +Q, resonance, growing as the crossing angle in-
creases. The result provides the evidence of the con-
sistency of the resonance measurement. It also makes
clear that the resonance is directly related to the crossing
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FIG. 7. Tune scans vs different crossing angles.

angle.

An interesting question is how the resonance effect
changes with crossing angle. Simulations have been done
to investigate the question. The simulation was run with
different crossing angles and the maximum amplitude on
the resonance was found for each angle. The result is
given in Fig. 8(a). From the figure, we see that the max-
imum amplitude grows rapidly when the half crossing an-
gle is about 1 to 1.2 mrad. After that, the maximum am-
plitude is almost flat, up to 10 mrad. Figure 8(b) plotted
the peak decay rate values of each scan as a function of
crossing angle. One can see that the growth of the decay
rate peaks is rapid at the beginning, but relatively flat for
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FIG. 8. Resonance strength as a function of crossing angle.
(a) Maximum amplitude on the resonance vs crossing angle. (b)
Peak decay rate on the resonance vs crossing angle.
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large angles.

Comparing Figs. 8(a) and 8(b), one can see some simi-
larity between them. Even though the two plots are not
plotting the same quantity, the two quantities reflect the
same physical phenomenon. In the two plots, both
curves have a rapid rise in the middle, and saturate later.
However, there are two obvious differences. First, the ex-
perimental data show that the decay rate rises at a larger
angle. Second, the last data point in Fig. 8(b) rises again.
The differences may be explained as follows: For the first
difference, because the radiation damping is not included
in the simulation, the particles may be easier to drive to
larger amplitudes than in the real situation. In other
words, the radiation damping suppresses the amplitude
growth that makes the rise of the effect in experiment
slower. For the second difference, one can argue that the
crossing angle has been pushed to the limit of the physi-
cal aperture. The tight physical aperture certainly
enhances the decay rate. We know that at the maximum
crossing angle there is only 8.60 physical aperture left at
the interaction region quadrupoles. It is obvious that the
physical aperture has its influence on the decay rate, and
the lifetime is very sensitive to the aperture at such an
amplitude. Therefore it is not surprising that a relatively
larger decay rate is measured at this angle. For the same
reason, the experiment is limited at +2.5 mrad crossing
angle.

In addition, the 2.4-mrad half crossing angle in the ex-
periment is approximately equal to 0.097 normalized
crossing angle. In CESR-B design, the bunch length is
significantly reduced. This normalized crossing angle is
equivalent to 3.5 mrad in CESR-B

V. CONCLUSION

The study shows a good consistency among analytical
results, computer simulations, and experiment on the
strongest coupling resonance family excited by the
crossing-angle beam-beam interaction. This resonance
family, 5Q, +Q, =integer, will result in a bad lifetime in
operation. Simulation also shows a saturation of this res-
onance effect at larger crossing angle. If the saturation is
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real, it means that good performance might be expected
even at the crossing angle required for the B-Factory.
However, the experiment does not address the simulation
prediction beyond 2.5 mrad.

The observation of the second rise of the decay rate
[represented by the last data point in Fig. 8(b)] means ei-
ther that some other resonance mechanism, as yet un-
known, is coming into play, or that it is just an aperture-
limiting result. The best way to resolve this is to go to a
larger crossing angle. Unfortunately, this is impossible in
current CESR, although it may be possible with new,
larger aperture quadrupoles near the IP, or with new in-
teraction region optics.

The study is limited in a simplified situation. The cou-
plings, errors, and nonlinearities of the ring and their in-
terference with the beam-beam interaction are not includ-
ed. The experiment was performed in a limited range of
tunes, even though it is near the practical operation
point. In B-Factory operation, there may be other reso-
nances excited by the mechanisms that are not considered
in this paper.

As mentioned previously, another study [4] investigat-
ed the crossing-angle beam-beam problem from the
operational point of view. The results show that an
ete” collider can operate with a small crossing angle
without significant luminosity degradation. The com-
bined results show that the crossing-angle design of the
B-Factory might be realistic, even without any compen-
sation, but the 5Q, =Q, resonances have to be avoided in
the operation.
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